
International Journal of Scientific & Engineering Research, Volume 3, Issue 7, July-2012 1
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

APPLICATION OF ARTIFICIAL NEURAL
NETWORKS FOR ASSESSING THE

TESTABILITY OF OBJECT ORIENTED

SOFTWARE
Yogesh Singh,Anju Saha

Abstract — In this paper, we present the application of neural networks for predicting the software testability using the object oriented

design metrics. The testability is generally measured in terms of the effort required for testing. The object oriented design metrics are used

as the independent variables and two JUnit based test metrics are used as dependent variables in this study. The software metrics used

include different measures concerning size, cohesion, coupling, inheritance, and polymorphism. This study compares the predic tion

performance of neural networks to the two types of statistical analysis methods: least squares regression and robust regression. This study

is conducted on an agile based software, written in Java having 40K lines of code. The results of the study indicate that the prediction

model using neural networks is better than that of the regression models in terms of the statistical measures of the model evaluation.

Index Terms — Artificial neural networks; Object oriented; Regression methods; Testability.

1. INTRODUCTION

The software testing is one of the costly phases of the

software development life cycle. Assessment of the

software testability in early stages of the software

development may have a highly beneficial impact on the

software testing cost and efficiency. Software testability has

been defined by various researchers from different points of

views. ISO defines it as ―attributes of software that bear on

the effort needed to validate the software product‖ [11].

The IEEE standard glossary defines the testability as ―the

degree to which a system or component facilitates the

establishment of test criteria and performance of tests to

determine whether those criteria have been met [10]‖. Voas

and Miller [18] define the software testability as the

probability that during testing, the software will fail on its

next execution if it contains faults. Binder [2] defines

software testability in terms of two properties of the

software under test: controllability and observability. Bache

and Mullerburg [1] define the testability in terms of the

effort required for testing. Jungmayr [12] measures the

testability based on the dependencies between the

components. The number of dependencies increase the

testing effort required to test the system. Software

testability is an external software attribute which evaluates

the effort and complexity required for software testing.

Most of the researchers have measured the testability

in terms of the testing effort. The more the testing effort, the

lesser is the testability. The software testability is a dynamic

quality attribute of the software and hence it is difficult to

measure it directly. However, it may be measured with the

help of the static software measures. In this paper, we

predict the testability of a class from the design metrics by

building neural network models. We also compare the

performance of neural network models with two statistical

modeling techniques: least squares regression and robust

regression. This study is performed upon an agile [6] based

java software having 40K lines of code, which is tested

using JUnit testing framework. A number of design metrics

related to size, inheritance, cohesion, coupling, and

polymorphism are calculated at the class level to measure

the testability. The main purpose of building these models

is to apply them to different kinds of systems, developed

using different platforms and to focus more on the classes

with lower testability.

In this paper, we make use of the two test metrics

proposed by Bruntink [4] to predict the software testability.

He has performed an empirical study which finds a

correlation between the design metrics and the test metrics.

His claim is that these test metrics provide an assessment of

the testing effort which in turn provides an insight into the

testability. However, Mouchawrab [16] has suggested that a

multivariate model should be developed and evaluated to

quantify the impact of the design metrics on the testability

metrics. Our work develops the multivariate models and

compares them with the neural network models.

A number of different attributes of the software

quality (like maintainability, fault proneness etc.) have been

————————————————

 Yogesh Singh is currently working as vice chancellor at the Maharaja
Sayaji Rao Univ Of Baroda, vadodara
E-mail: ys66@rediffmail.com
Anju Saha is currently working as asst. prof. at GGSIP University,
Dwarka, Delhi, E-mail: anju_kochhar@yaho.com

International Journal of Scientific & Engineering Research, Volume 3, Issue 7, July-2012 2
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

predicted through various empirical studies [9],[19. In these

studies different statistical methods and neural networks

are used to predict the attributes of the software quality.

The software testability is also one of the software quality

attributes which is a part of the software maintainability

attribute. This study uses design metrics to model the

software quality attribute (testability) using the neural

networks and two statistical techniques .i.e. least squares

regression and robust regression. This study is motivated

by a number of factors: 1) Predicting the software testability

can help in improving the software quality as it is one of the

software quality attributes. 2) Software reliability can be

measured from the software testability, which is one of the

critical aspects of the software. 3) As software testability

provides information about the testing effort required to

test the system [16] it can help in planning the different

testing activities. 4) The number of empirical studies are

very few in the area of the software testability.

The layout of the rest of the paper is as follows. Section 2

describes the empirical study design. Section 3 describes the

data analysis and research methodology. Section 4 describes

the empirical results and section 5 describes the conclusions

and future work.

2 THE EMPIRICAL STUDY DESIGN
In this section, we provide some background of the system

that is used in this study, the data collected, the dependent

and independent variables.

2.1 Description of the empirical study

This study makes use of an agile based software, ―pmr‖,

which is open source (the source code of ―pmr‖ can be

found at www.sourceforge.net) and is written in java

language, with 40K lines of code. The number of java

classes in ―pmr‖ is 267. The project ―pmr‖ is tested using

the JUnit testing framework. The JUnit test classes in this

project are 54.The JUnit testing framework helps to create a

JUnit test class for every java class. The source code of the

source java system is executed using Eclipse IDE

(http://www.eclipse.org). This study is performed at the

class level, hence the number of java classes used in this

study are equal to the number of JUnit classes. An eclipse

plugin is developed to collect the data from the above

system. The values of all the design metrics are obtained for

the java classes which have their JUnit classes and the value

of test metrics is obtained from the corresponding JUnit

classes. The values of design metrics of the java class and

test metrics of the corresponding test class are paired to

perform the analysis.

The project ―pmr‖ is an open source web-based software

delivery management system

[sourceforge.net/projects/pmr/]. It provides a clear view

of the requirements, requirements changes, project

progress, risks, cost, etc. It provides tools for the team to

manage tasks, quality, time, cost, iterations and deliveries.

It eases communication between the project team and the

customer. It monitors client satisfaction. It is suitable for

any agile development processes, including XP. The project

―pmr‖ focuses on managing customer requirements where

each requirement has tasks, iterations, risks, changes, a

budget, and a delivery. Some of the important features of

―pmr‖ are: requirements and traceability management, task

and iteration management, delivery management, calendar,

message boards, document management, resource

management, test management, bug tracking, satisfaction

management, risks management, budget management etc.

2.2. Dependent variables

The aim of this study is to compare the prediction

performance of the regression models and the neural

network models to assess the testability of a class. We,

therefore, need to select a suitable and practical measure of

testability as the dependent variable for our study. In this

paper, the testability is measured in terms of the testing

effort of the class. The testing effort is measured through

two JUnit based test metrics, which are the dependent

variables for this study. The test metrics are collected from

the JUnit test classes of the ―pmr‖ system. The test metrics

used in this study are: TLOC (Test Lines of Code), and TC

(Number of asserts). These metrics are based at the class

level and are calculated from the JUnit test classes of the

java classes of the ―pmr‖ system. TLOC and TC metrics are

proposed by Bruntink and Deursen [4].

Fig 1: stack. java class Fig 2:stackTest.java class

TLOC (Test Lines Of Code) Metric: It is defined as the

number of lines of code (non comment and non blank) in a

JUnit test class. In figure 2, stackTest class has TLOC = 13.

Since the TLOC for stackTest class is 13.

TC (Number of asserts) Metric: It is defined as the number

of asserts in the test class. In figure 2, there are two asserts

 public class stack {

 public stack()

 {

 }

 public void push (int a)

 {

 }

 public int pop()

 {

 }

 }

import

junit.framework.TestCase;

public class stackTest extends

TestCase

 {

 private stack st = new

stack();

 public void testpush()

{

 assertEquals(7, st.push(7));

 }

 public void testpop()

{

 assertEquals(7, st.pop());

}}

International Journal of Scientific & Engineering Research, Volume 3, Issue 7, July-2012 3
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

in the stackTest class. Hence for this class the value of TC=

2.

2.3 Independent Variables

The measures of size, cohesion, coupling, inheritance and

polymorphism are the independent variables used in this

study. More specifically, in this study, we focus on the

measures defined at the class level. The object oriented

metrics used in this study are given in table 1. We consider

a total of 14 OO metrics, 4 size metrics, 4 coupling metrics, 3

cohesion metrics, 2 inheritance measures and one

polymorphism metric. These metrics are defined in

appendix A.

3 DATA ANALYSIS AND RESEARCH METHODOLOGY

In this section, the methodology used to analyze the

object oriented metrics and the data collected for the

―pmr‖ system is presented. The procedure used to

analyze the data collected for each metric comprises: a)

The least squares linear regression model, b) the robust

regression model, and c) the multivariate model using

the artificial neural network to predict the testability of a

class. These analysis procedures are presented in detail

in the following subsections.

3.1Regression Methods

Multivariate Linear Regression (MLR) is a statistical

method to model the relationship between two or more

independent variables and one dependent variable

which fits a linear equation to the observed data. The

general form of a MLR model is given by:

 Yi= a0+ a1xi1 +……………. + akxin

 yi= a0+ a1xi1 +…………….+ akxin + ei

where xi1,…….., xin are the independent variables and

a0, a1, …, an are the parameters to be estimated. Yi is the

dependent variable to be predicted, yi is the actual value

of the dependent variable, and ei is the error in the

prediction of the ith case [17].

 When building an MLR model, it is ensured that only

the important independent variables are included in the

resulting model through the variable selection method.

There are different kinds of variable selection methods:

stepwise selection, forward selection, and backward

elimination. This study uses the backward elimination

regression method. In the stepwise selection method, the

independent variables are either added or deleted from

the regression model to select an optimal subset of the

independent variables for the model. In the forward

selection method, the model includes the intercept at the

first step. The independent variables are then included

in the model depending upon some evaluation criteria,

until a stopping criterion is satisfied. The backward

elimination method includes all the independent

variables as the first step. These variables are then

removed one at a time, until a stopping criterion is

Table 1: Metrics for Object oriented Software

satisfied.

One of the techniques of robust regression used for this

study is: Least-median-squares (LMS) [15]. This is called

S.

No

Metric OO

Attribute

Sources

1 Line of code per

class (LOC)

Class [8]

2. Number of

Attributes per

Class (NOA)

Class [8]

3.
Number of

Methods per Class

(NOM)

Class [8]

4.
Weighted

Methods per Class

(WMC)

Class
[5]

5.
Response for

Class(RFC)
Coupling

[5]

6
Coupling between

Objects (CBO) Coupling
[5]

7
Data Abstraction

Coupling (DAC) Coupling [8]

8
Message Passing

Coupling (MPC) Coupling [8]

9.
Tight Class

Cohesion (TCC) Cohesion
[3]

10.
Information flow

based Cohesion

(ICH)

Cohesion
[14]

11.
Lack of Cohesion

(LCOM) Cohesion
[5]

12
Depth of

Inheritance (DIT) Inheritance
[5]

13
Number of

Children (NOC) Inheritance
[5]

14
Number of

Methods

Overridden by a

subclass (NMO)

Polymorphism [8]

International Journal of Scientific & Engineering Research, Volume 3, Issue 7, July-2012 4
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

the robust regression method because it produces the

predictive model that is more effective for making

predictions for the data sets containing outliers.

The least squares regression method minimizes the sum

of squared residuals as the basis for the minimization of

the error; the LMS regression uses the median of the

squared residuals to minimize the error.

Table 2: Descriptive statistics of pmr

3.2. Artificial Neural Networks

The artificial neural networks (ANN) consist of a

number of interconnected neurons, each of which has a

number of inputs, outputs and a transformation

function. These neurons are arranged in the form of

three types of layers: input layer, output layer and

hidden layer(s). The input layer receives the values from

the input variables and the output layer gives the output

of the network [13]. Between the input and output layer

there are a number of hidden layers. Each neuron is

connected to another neuron through weights. The most

common alternative to the MLR models is the feed-

forward supervised-learning neural networks for

predicting the effort and quality of the software [Zhou and

Leung, (2007)]. Figure 3 shows the architecture of a feed

forward neural network chosen in this study which has

four layers of nodes: one input layer, one output layer

and two hidden layers. Each line connecting the nodes

has a unique weight associated to it. The signals in the

Figure 3: Architecture of the Neural Network

feed forward neural network travel in one direction

only, that is from input to output. The output of each

node is determined from its inputs and the weights

associated with the lines between its inputs and this

node. This study develops two 4-layer feed-forward

back propagation networks with an input layer of

fourteen nodes, 10 nodes in the first hidden layer,10

nodes in the second hidden layer, and one node in the

output layer. Two networks are for two different outputs

corresponding to the two dependent variables (TLOC

and TC).

The input node(s) are connected to every node of

the hidden layer and are not directly connected to the

output nodes. All the nodes of the hidden layer are

connected to the output nodes. Thus, the network does

not have any shortcut connection or any lateral

connection. The transfer function used between all the

layers is tansig. The number of epochs used was 1000 to

achieve the training goal. The network training function

used is trainrp, which updates weight and bias values

according to the resilient back propagation algorithm.

The model is trained on approximately two thirds of the

input data set and the network is tested on the

remaining one third of the data set. The advantage of

neural networks is that they are self-adaptive techniques

and do not require more understanding with the input

data. The reason for using neural networks is that the

relation between the output and input variables is not

Metric Min Max Mean Std.

Deviation

WMC 1 45 10.93 10.248

NMO 0 2 0.44 0.839

NOA 0 7 1.76 2.037

NOM 1 28 7.28 6.965

DIT 0 2 1.35 0.520

NOC 0 2 0.06 0.302

CBO 0 15 2.13 2.882

RFC 1 62 11.69 11.472

DAC 0 7 0.89 1.355

TCC 0 1 0.41 0.428

LCOM 0 310 13.06 48.530

ICH 0 24 1.50 5.076

MPC 0 113 7.20 17.178

LOC 7 262 53.69 48.900

TLOC 3 545 119.76 136.243

TM 1 52 9.59 11.249

TC 0 121 18.98 24.574

Input

neurons

weights Hidden

layer

Hidden

layer

weights output

neurons

International Journal of Scientific & Engineering Research, Volume 3, Issue 7, July-2012 5
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

linear and is very complex.

3.3. Performance Evaluation

The ―pmr‖ model development data set (roughly two-

thirds of the entire data set) was analyzed using the

spearman’s correlation analyses and scatter plots, in

order to identify influential variables with an aim to

create a pragmatic model. The models were developed

based on the results of this analysis under the least-

squares regression, the robust regression methods and

the neural network. The models obtained using the

development data set were then applied to the testing

subset (remaining one third of data set) and were

evaluated using the following error measures.

1. The magnitude of relative error (MRE): The

magnitude of relative error (MRE) [7] is a normalized

measure of the discrepancy between the actual data

values (Dact) and the predicted values (Dpred):

 ARE = |(Dact – Dpred)|

 (1)

 MRE =ARE/ Dact (2)

The mean MRE (MMRE): MMRE [7] is the mean value

for this indicator over all the observations in the data set.

A software practitioner considers a model to be accurate

if the value of MMRE is low.

The Pred(k) measures an indication of the overall fit for

a set of data points, based on the MRE values for each

data point:

 Pred(k) = i/n (3)

Table 3: Regression performance for TLOC

Table 4: Regression performance for TC

Ta

ble 5:

Neur

al

Netw

ork

Perfo

rman

ce for

TLO

C

Ta

ble 6: Neural Network Performance for TC

Pmr

TLO

C

Robust Regression Least Squares Regression

All Trainin

g

Testin

g

All

Training Testin

g

MM

RE

2.2

0.78 1.27 0.48 0.52 0.43

Std 29.3 25.68 40.53 45.9 23.1 67.3

Medi

an 27.5 28.16 27.08

22.14 22.95 22.07

Abs

mean 34.12 32.89 38.42

36.81 27.15 56.9

Asu

m

1842.5

5141 461

1766.

86

841.55 968.9

Pred(

0.25) 0.33 0.48 0.33

0.39 0.42 0.353

Pred(

0.30) 0.41 0.5 0.42

0.41 0.42 0.412

Pmr

TC

Robust Regression Least Squares Regression

All

Train

ing

Testing All

Training Testing

MMR

E

0.89 1.44 1.79 1.16 1.15 1.16

Std 15.5 8.06 29.17 18.9 8.2 28.82

Medi

an 6.05 5.4 6.04 5.38

5.03

7.45

Absm

ean 9.91 7.31 17.57 11.9

7.85

19.32

Asu

m

535.3 277.8

9

210.8

571.7

243.3 328.43

Pred(

0.25) 0.44

0.37

0.33 0.27

0.29 0.24

Pred(

0.30) 0.48

0.45

0.42 0.31

0.32 0.29

pmr

TLOC

Neural Model

All Training Testing

MMRE 0.17 0.21 0.28

Std 6.89 0.69 12.24

Median 0.56 0.229 1.32

Absmean 1.87 0.47 5.18

Asum 100.8 17.94 82.87

Pred(0.25) 0.72 0.79 0.56

Pred(0.30) 0.76 0.79 0.69

pmr

TC

Neural Model

All Training Testing

MMRE 0.27 0.25 0.29

Std 6.8 0.96 11.6

Median 1.03 0.64 3.3

Absmean 2.7 0.9 6.9

Asum 144.9 34.06 110.86

Pred(0.25) 0.69 0.66 0.63

Pred(0.30) 0.69 0.68 0.69

International Journal of Scientific & Engineering Research, Volume 3, Issue 7, July-2012 6
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

In equation (2), k is the selected threshold value for

MRE, i is the number of data points with MRE less than

or equal to k, and n is the total number of data points. In

this study Pred(0.25) and Pred(0.30) are used to compare

the prediction performance of the models. Pred(0.25)

measures the percentage of the estimates with an MRE

of 25% or less, and Pred(0.3) measures the percentage of

the estimates with an MRE of 30% or less. We also use

the sum of AREs (Asum), the mean of AREs (Absmean),

the median of AREs(Median) and the standard deviation

of AREs (Std) to see the distribution of AREs. The Asum

measures the ARE over the data set, the Median

measures the central tendency of the distribution of

ARE, the Std measures the dispersion of the distribution

of ARE and the Absmean measures the mean of the

AREs. These measures are used to measure the

prediction performance of the models.

4 EMPIRICAL RESULTS
In this section, we analyze the results of the ANN

models using the ―pmr‖ data set. We have used

MATLAB to build the back propagation trained feed-

forward ANN model. To assess the benefits of using

ANN, we compare the prediction performances of the

ANN models with those of the MLR models. In this

study, we use the backward selection procedure to build

the MLR prediction models. The software used is SPSS

16.0. The entry criterion used in the backward selection

is the p-value of the F statistic being smaller than or

equal to 0.05 and the eliminating criterion used is the p-

value of the F statistic being larger than or equal to 0.10.

The software STATA is used to build the robust

regression models.

 4.1.Regression results

Tables 3 and 4 show the values of the performance

measures achieved by both the regression models for the

pmr dataset for both the dependent variables (TLOC, TC).

The performance measures are calculated for all the data,

the training data and the testing data. The results presented

in the Tables 3 and 4 illustrate that the models built under

the least-squares regression are better than the ones built

with the robust regression.

Table 3 shows that the Robust regression model for

TLOC has achieved the MMRE values of 2.2, 0.78 and 1.27,

the pred(0.25) values of 0.33, 0.48 and 0.33 for all data,

training data and testing data. Table 3 shows that the Least

squares regression model for TLOC has achieved the

MMRE values of 0.48, 0.52 and 0.43, the pred(0.25) value of

0.39, 0.42 and 0.353 for all data, training data and testing

data. The values of MMRE are lower for the least squares

regression as compared to the robust regression

model.Table 4 shows that the Robust regression model for

TC has achieved the MMRE values of 0.89, 1.44 and 1.79,

the pred(0.25) value of 0.44, 0.37 and 0.33 for all data,

training data and testing data. Table 4 shows that the Least

squares regression model for TC has achieved the MMRE

values of 1.16, 1.15 and 1.16, the pred(0.25) values of 0.27,

0.29 and 0.24 for all data, training data and testing data. The

values of MMRE are lower for the least squares regression

as compared to the robust regression model.

From the above discussion we conclude that out of the

two regression models, least-squares regression model is

better than the robust regression model as it has the lower

value of MMRE for both the dependent variables.

4.2. The Neural Network Predictions

The two neural network models were developed for two

different dependent variables (TLOC and TC) using the

following steps:

1. The ―pmr‖ data set was divided into the training and

validation sets (roughly two-third and one-third

respectively). The same division of data set is used for

training and validation as those used in case of the

regression models.

2. A number of networks were created with different

network architectures and training parameters.

3. The training data set was used to train the networks,

until the error is minimum.

4. The best network, in terms of having the lowest error,

was used to make predictions for the testing data.

5. Different error measures are calculated on the

network’s performance.

The values in Tables 5 and 6 show that the neural

network models for TLOC and TC perform significantly

better than the corresponding regression models in

Tables 3 and 4. Table 5 shows that the MMRE values for

TLOC are 0.17, 0.21 and 0.28 for the neural network

model, for all data, training data and testing data,

respectively. Whereas the corresponding values for least

squares regression are 0.48, 0.52, and 0.43 and for robust

regression method are 2.2, 0.78, and 1.27. By predicting

both the dependent variables the testing effort is

International Journal of Scientific & Engineering Research, Volume 3, Issue 7, July-2012 7
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

measured which in turn provides an insight into the

testability.

The results show that the models constructed using

the neural network method are feasible and adaptable to

object oriented systems in order to predict the software

testability. However, many more studies are needed in

order to provide generalized conclusions.

5 CONCLUSIONS AND FUTURE WORK
This study has compared the results of the prediction of

the software testability using the ANN method with the

results of the models predicted using the two types of

regression methods (the least squares regression method

and the robust regression method). The independent

varaibles used in this work are the object oriented design

metrics and the dependent varaibles are the test metrics

of the object oriented software at the class level. These

test metrics provide the testing effort for a class which in

turn provides an assessment of the class testability. In

order to compare and analyse the performance of the

ANN method and the regression methods, we have used

an open source software called ―pmr‖. The values of

MMRE in ANN model were small as compared to the

MMRE values in regression models for both the

dependent variables (TLOC and TC). Hence, the results

show that the performance of the ANN method is higher

than that of the regression method. Thus, ANN method

may be used in predicting the software testability of

object oriented systems.

However, there are a few limitations of this

study. First, although the size of data set used was quite

significant, further empirical studies with different

systems of different sizes and different platforms are

needed to strengthen the results of this study. Second,

the software testability is based upon a number of

aspects like the requirements, the process, and the

design attributes etc. In this study, only design attributes

have been used for predicting the testability. Third, this

study should be extended to a number of other design

level metrics which are based on other object oriented

features like: polymorphism, exception handling etc.

REFERENCES

[1] Bache, R.; M. Mullerburg.. ―Measures of testability as a basis for

quality assurance‖, Software Engineering Journal, vol.5, no.2, pp.

86-92. 1990

[2] Binder, R.V., ―Design for testability in object-oriented systems‖,

Communication of the ACM,vol. 37, no. 9, pp. 87–101,1994.

[3] Briand, L.; W. Daly, J. Wust., ―A Unified Framework for Coupling

Measurement in Object-Oriented Systems‖, IEEE Transactions on

software Engineering, vol. 25, pp. 91-121,1999.

[4] Bruntink, M..;A.V. Deursen., ―An Empirical Study into Class

Testability‖, Journal of systems and software vol ,79, no. 9, pp.1219–

1232,2006.

[5] Chidamber, S., C. Kemerer, ―A metrics suite for object oriented

design‖, IEEE Transactions on Software Engineering, vol 20, no. 6,

pp. 476–493,1994.

[6] Cockburn, A., Agile Software Development, Addison-Wesley, 2002.

[7] Gray, A. R.., MacDonell, S. G., ―Software metrics data analysis:

exploring the relative performance of some commonly used

modeling techniques‖, Empirical Software Engineering, vol. 4, pp.

297–316, 1999.

[8] Henderson-Sellers, B., Object-Oriented Metrics, Prentice Hall, 1996.

[9] Heung., Seok Chae., Tae Yeon Kim Woo., Sung Jung., Joon-Sang

Lee., ―Using Metrics for Estimating Maintainability of Web

Applications: An Empirical Study‖, 6th IEEE/ACIS International

Conference on Computer and Information Science, pp. 1053 – 1059,

2007.

[10] IEEE Press, IEEE Standard Glossary of Software Engineering

Technology, ANSI/IEEE Standard, 1990.

[11] ISO, International standard ISO/IEC 9126‖, Information

technology: Software Product Evaluation: Quality Characteristics

and Guidelines for their Use, 1991

[12] Jungmayr, S., ―Identifying Test-Critical Dependencies‖,

Proceedings of the IEEE International Conference on Software

Maintenance, pp. 404–413, 2002.

[13] Khoshgoftaar, T.M., David L. Lanning, ―A Neural Network

Approach for Early Detection of Program Modules Having High

Risk in the Maintenance Phase‖, Journal of Systems and Software,

vol. 29, pp. 85-91, 1995.

[14] Lee.Y., B.Liang., S.Wu., F.Wang., ―Measuring the Coupling and

Cohesion of an Object-Oriented program based on Information

flow‖, In proceedings of the international conference on software

quality, 1995.

[15] Rousseeuw, P. J.; Leroy, A. M., Robust Regression and Outlier

Detection, John Wiley & Sons, New York NY, USA, 1987.

[16] S., Lionel C., Briand, Yvan Labiche., ―A measurement framework

for object-oriented software testability‖, Information and Software

Technology, vol. 47, pp.979–997, 2005.

[17] T. Khoshgoftaar., M. Seliya, ―Fault prediction modeling for

software quality estimation: comparing commonly used

techniques‖, Empirical Software Engineering, vol. 8, no. 3, pp. 255–

283, 2003.

[18] Voas, J.M., K.W. Miller, ―Software testability: the new

verification‖, IEEE Software, vol. 12, no. 3, pp. 17–28, 1995.

[19] Yogesh Singh., Bindu Goel, ―An Integrated Model to Predict Fault

Proneness Using Neural Networks‖, Software Quality Professional,

vol. 10, no. 2, pp. 22-32, 2008.

[20] Yuming Zhou.,Hareton Leung, ―Predicting object-oriented

software maintainability using multivariate adaptive regression

splines‖, Journal of Systems and Software, vol. 80, pp. 1349-1361,

2007.

International Journal of Scientific & Engineering Research, Volume 3, Issue 7, July-2012 8
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

APPENDIX

Size metrics

In this section four size metrics are discussed. These metrics
measure the size of the system in terms of lines of code,
attributes and methods included in the class. As these
metrics capture the complexity of the class hence they can
give an insight into the testability of the class.

Lines of code per class (LOC)
It counts the total number of lines of code (non-blank and
non-comment lines) in the class.
Number of Attributes per Class (NOA)
It counts the total number of attributes defined in a class.
Number of Methods per Class (NOM)
It counts number of methods defined in a class.
Weighted Methods per Class (WMC)
The WMC is the count of the sum of the McCabe’s
Cyclomatic Complexity for all the methods in the class. If
method complexity is one for all the methods, then WMC =
n, the number of methods in the class.

Cohesion Metrics

Cohesion measures the degree to which the elements of a
module are functionally related. A strongly cohesive
module does little or no interaction with other modules and
implements the functionality which is related to only one
feature of the software. This study considers following
three cohesion metrics.

Lack of Cohesion in Methods (LCOM)
Lack of Cohesion (LCOM) measures the cohesiveness of the
class. It is defined as below:
Let M be the set of methods and A be the set of attributes
defined in the class. Ma is the number of methods that
access a. Mean be the mean of Ma over A.Then,
LCOM = (Mean -|M|)/(1 - |M|)
Information flow based Cohesion (ICH)
ICH for a class is defined as the number of invocations of
other methods of the same class, weighted by the number
of parameters of the invoked method.
Tight Class Cohesion (TCC)
The measure TCC is defined as the percentage of pairs of
public methods of the class with common attribute usage.

Coupling metrics
Coupling relations increase complexity and reduce
encapsulation.

Coupling Between Objects (CBO)
CBO for a class is the count of the number of other classes
to which it is coupled. Two classes are coupled when
methods declared in one class use methods or instance
variables defined by the other class.

Data Abstraction Coupling (DAC)
Data Abstraction is a technique of creating new data types
suited for an application to be programmed. Data
Abstraction Coupling (DAC) is defined as the number of
ADTs defined in a class.
Message passing Coupling (MPC)
Message Passing Coupling (MPC) is defined as the
―number of send statements defined in a class‖. So if two
different methods in class C access the same method in
class D, then MPC = 2.
Response for a Class (RFC)
The response for a class (RFC) is defined as the set of
methods that can be executed in response to a message
received by an object of that class.

Inheritance Metrics
This section discusses two different inheritance metrics,
which are considered for this study.

Depth of Inheritance Tree (DIT)
The depth of a class within the inheritance hierarchy is the
maximum number of steps from the class node to the root
of the tree and is measured by the number of ancestor
classes.
Number of Children (NOC)
The NOC is the number of immediate children of a class in
the class hierarchy.

Polymorphism Metrics
Polymorphism is the characteristic of object oriented
software through which the implementation of a given
operation depends on the object that contains the operation.

Number of Methods Overridden by a subclass (NMO)
When a method in a child class has the same name and
signature as in its parent class, then the method in the
parent class is said to be overridden by the method in the
child class.

