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Abstract — In this paper, we present the application of neural networks for predicting the software testability using the object oriented 

design metrics. The testability is generally measured in terms of the effort required for testing. The object oriented design metrics are used 

as the independent variables and two JUnit based test metrics are used as dependent variables in this study. The software metrics used 

include different measures concerning size, cohesion, coupling, inheritance, and polymorphism. This study compares the predic tion 

performance of neural networks to the two types of statistical analysis methods: least squares regression and robust regression. This study 

is conducted on an agile based software, written in Java having 40K lines of code. The results of the study indicate that the prediction 

model using neural networks is better than that of the regression models in terms of the statistical measures of the model evaluation. 

Index Terms — Artificial neural networks; Object oriented; Regression methods; Testability. 

1.   INTRODUCTION 

The software testing is one of the costly phases of the 

software development life cycle. Assessment of the 

software testability in early stages of the software 

development may have a highly beneficial impact on the 

software testing cost and efficiency. Software testability has 

been defined by various researchers from different points of 

views. ISO defines it as ―attributes of software that bear on 

the effort needed to validate the software product‖ [11]. 

The IEEE standard glossary defines the testability as ―the 

degree to which a system or component facilitates the 

establishment of test criteria and performance of tests to 

determine whether those criteria have been met [10]‖. Voas 

and Miller [18] define the software testability as the 

probability that during testing, the software will fail on its 

next execution if it contains faults. Binder [2] defines 

software testability in terms of two properties of the 

software under test: controllability and observability. Bache 

and Mullerburg [1] define the testability in terms of the 

effort required for testing. Jungmayr [12] measures the 

testability based on the dependencies between the 

components. The number of dependencies increase the 

testing effort required to test the system. Software 

testability is an external software attribute which evaluates 

the effort and complexity required for software testing. 

Most of the researchers have measured the testability 

in terms of the testing effort. The more the testing effort, the 

lesser is the testability. The software testability is a dynamic 

quality attribute of the software and hence it is difficult to 

measure it directly. However, it may be measured with the 

help of the static software measures. In this paper, we 

predict the testability of a class from the design metrics by 

building neural network models. We also compare the 

performance of neural network models with two statistical 

modeling techniques: least squares regression and robust 

regression. This study is performed upon an agile [6] based 

java software having 40K lines of code, which is tested 

using JUnit testing framework. A number of design metrics 

related to size, inheritance, cohesion, coupling, and 

polymorphism are calculated at the class level to measure 

the testability. The main purpose of building these models 

is to apply them to different kinds of systems, developed 

using different platforms and to focus more on the classes 

with lower testability. 

In this paper, we make use of the two test metrics 

proposed by Bruntink [4] to predict the software testability. 

He has performed an empirical study which finds a 

correlation between the design metrics and the test metrics. 

His claim is that these test metrics provide an assessment of 

the testing effort which in turn provides an insight into the 

testability. However, Mouchawrab [16] has suggested that a 

multivariate model should be developed and evaluated to 

quantify the impact of the design metrics on the testability 

metrics. Our work develops the multivariate models and 

compares them with the neural network models. 

A number of different attributes of the software 

quality (like maintainability, fault proneness etc.) have been 
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predicted through various empirical studies [9],[19. In these 

studies different statistical methods and neural networks 

are used to predict the attributes of the software quality. 

The software testability is also one of the software quality 

attributes which is a part of the software maintainability 

attribute. This study uses design metrics to model the 

software quality attribute (testability) using the neural 

networks and two statistical techniques .i.e. least squares 

regression and robust regression. This study is motivated 

by a number of factors: 1) Predicting the software testability 

can help in improving the software quality as it is one of the 

software quality attributes. 2) Software reliability can be 

measured from the software testability, which is one of the 

critical aspects of the software. 3) As software testability 

provides information about the testing effort required to 

test the system [16] it can help in planning the different 

testing activities. 4) The number of empirical studies are 

very few in the area of the software testability.  

The layout of the rest of the paper is as follows. Section 2 

describes the empirical study design. Section 3 describes the 

data analysis and research methodology. Section 4 describes 

the empirical results and section 5 describes the conclusions 

and future work.  
 
2 THE EMPIRICAL STUDY DESIGN 
In this section, we provide some background of the system 

that is used in this study, the data collected, the dependent 

and independent variables. 

 

2.1 Description of the empirical study 

 

This study makes use of an agile based software, ―pmr‖, 

which is open source (the source code of ―pmr‖ can be 

found at www.sourceforge.net) and is written in java 

language, with 40K lines of code. The number of java 

classes in ―pmr‖ is 267. The project ―pmr‖ is tested using 

the JUnit testing framework. The JUnit test classes in this 

project are 54.The JUnit testing framework helps to create a 

JUnit test class for every java class. The source code of the 

source java system is executed using Eclipse IDE 

(http://www.eclipse.org). This study is performed at the 

class level, hence the number of java classes used in this 

study are equal to the number of JUnit classes. An eclipse 

plugin is developed to collect the data from the above 

system. The values of all the design metrics are obtained for 

the java classes which have their JUnit classes and the value 

of test metrics is obtained from the corresponding JUnit 

classes. The values of design metrics of the java class and 

test metrics of the corresponding test class are paired to 

perform the analysis.  

The project ―pmr‖ is an open source web-based software 

delivery management system 

[sourceforge.net/projects/pmr/]. It provides a clear view 

of the requirements, requirements changes, project 

progress, risks, cost, etc. It provides tools for the team to 

manage tasks, quality, time, cost, iterations and deliveries. 

It eases communication between the project team and the 

customer. It monitors client satisfaction. It is suitable for 

any agile development processes, including XP. The project 

―pmr‖ focuses on managing customer requirements where 

each requirement has tasks, iterations, risks, changes, a 

budget, and a delivery. Some of the important features of 

―pmr‖ are: requirements and traceability management, task 

and iteration management, delivery management, calendar, 

message boards, document management, resource 

management, test management, bug tracking, satisfaction 

management, risks management, budget management etc. 

 

2.2. Dependent variables 

 

The aim of this study is to compare the prediction 

performance of the regression models and the neural 

network models to assess the testability of a class. We, 

therefore, need to select a suitable and practical measure of 

testability as the dependent variable for our study. In this 

paper, the testability is measured in terms of the testing 

effort of the class. The testing effort is measured through 

two JUnit based test metrics, which are the dependent 

variables for this study. The test metrics are collected from 

the JUnit test classes of the ―pmr‖ system. The test metrics 

used in this study are: TLOC (Test Lines of Code), and TC 

(Number of asserts). These metrics are based at the class 

level and are calculated from the JUnit test classes of the 

java classes of the ―pmr‖ system. TLOC and TC metrics are 

proposed by Bruntink and Deursen [4]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: stack. java class     Fig 2:stackTest.java class 

   

TLOC (Test Lines Of Code) Metric: It is defined as the 

number of lines of code (non comment and non blank) in a 

JUnit test class. In figure 2, stackTest class has TLOC = 13. 

Since the TLOC for stackTest class is 13. 

TC (Number of asserts) Metric: It is defined as the number 

of asserts in the test class. In figure 2, there are two asserts 

    public class stack { 

    public stack() 

  {  

    } 

    public void push (int a) 

   {  

   } 

    public int pop( )  

    { 

     }  

 } 

     

    

 

 

import 

junit.framework.TestCase; 

public class stackTest extends 

TestCase 

 { 

    private stack st = new 

stack(); 

    public void testpush()  

{ 

    assertEquals(7, st.push(7));   

  } 

    public void testpop()  

{ 

    assertEquals(7, st.pop()); 

}} 
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in the stackTest class. Hence for this class the value of TC= 

2. 

 

2.3  Independent Variables 

 

The measures of size, cohesion, coupling, inheritance and 

polymorphism are the independent variables used in this 

study. More specifically, in this study, we focus on the 

measures defined at the class level. The object oriented 

metrics used in this study are given in table 1. We consider 

a total of 14 OO metrics, 4 size metrics, 4 coupling metrics, 3 

cohesion metrics, 2 inheritance measures and one 

polymorphism metric. These metrics are defined in 

appendix A.  

 
 
3 DATA ANALYSIS AND RESEARCH METHODOLOGY 
 

In this section, the methodology used to analyze the 

object oriented metrics and the data collected for the 

―pmr‖ system is presented. The procedure used to 

analyze the data collected for each metric comprises: a) 

The least squares linear regression model, b) the robust 

regression model, and c) the multivariate model using 

the artificial neural network to predict the testability of a 

class. These analysis procedures are presented in detail 

in the following subsections. 

 

3.1Regression Methods 

Multivariate Linear Regression (MLR) is a statistical 

method to model the relationship between two or more 

independent variables and one dependent variable 

which fits a linear equation to the observed data. The 

general form of a MLR model is given by: 

  Yi= a0+ a1xi1 +……………. + akxin 

   yi= a0+ a1xi1 +…………….+ akxin + ei 

where xi1,…….., xin  are the independent variables and 

a0, a1, …, an are the parameters to be estimated. Yi is the 

dependent variable to be predicted, yi is the actual value 

of the dependent variable, and ei is the error in the 

prediction of the ith case [17]. 

 When building an MLR model, it is ensured that only 

the important independent variables are included in the 

resulting model through the variable selection method. 

There are different kinds of variable selection methods: 

stepwise selection, forward selection, and backward 

elimination. This study uses the backward elimination 

regression method. In the stepwise selection method, the 

independent variables are either added or deleted from 

the regression model to select an optimal subset of the 

independent variables for the model. In the forward 

selection method, the model includes the intercept at the 

first step. The independent variables are then included 

in the model depending upon some evaluation criteria, 

until a stopping criterion is satisfied. The backward 

elimination method includes all the independent 

variables as the first step. These variables are then 

removed one at a time, until a stopping criterion is 

 

 

Table 1: Metrics for Object oriented Software 

 

 

satisfied.   

One of the techniques of robust regression used for this 

study is: Least-median-squares (LMS) [15]. This is called 

S. 

No 

 

Metric OO 

Attribute 

Sources 

 

1 Line of code per 

class (LOC) 

Class [8] 

2. Number of 

Attributes per 

Class (NOA) 

Class [8] 

3. 
Number of 

Methods per Class 

(NOM) 

Class [8] 

4. 
Weighted 

Methods per Class 

(WMC) 

Class 
[5] 

5. 
Response for 

Class(RFC) 
Coupling 

[5] 

6 
Coupling between 

Objects (CBO) Coupling 
[5] 

7 
Data Abstraction 

Coupling (DAC) Coupling [8] 

8 
Message Passing 

Coupling ( MPC) Coupling [8] 

9. 
Tight Class 

Cohesion (TCC) Cohesion 
[3] 

10. 
Information flow 

based Cohesion 

(ICH) 

Cohesion 
[14] 

11. 
Lack of Cohesion 

(LCOM) Cohesion 
[5] 

12 
Depth of 

Inheritance (DIT) Inheritance 
[5] 

13 
Number of 

Children (NOC) Inheritance 
[5] 

14 
Number of 

Methods 

Overridden by a 

subclass (NMO) 

Polymorphism [8] 
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the robust regression method because it produces the 

predictive model that is more effective for making 

predictions for the data sets containing outliers.  

 

The least squares regression method minimizes the sum 

of squared residuals as the basis for the minimization of 

the error; the LMS regression uses the median of the 

squared residuals to minimize the error.  

 

Table 2: Descriptive statistics of pmr 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Artificial Neural Networks 

The artificial neural networks (ANN) consist of a 

number of interconnected neurons, each of which has a 

number of inputs, outputs and a transformation 

function. These neurons are arranged in the form of 

three types of layers: input layer, output layer and 

hidden layer(s). The input layer receives the values from 

the input variables and the output layer gives the output 

of the network [13]. Between the input and output layer 

there are a number of hidden layers. Each neuron is 

connected to another neuron through weights. The most 

common alternative to the MLR models is the feed-

forward supervised-learning neural networks for 

predicting the effort and quality of the software [Zhou and 

Leung, (2007)]. Figure 3 shows the architecture of a feed 

forward neural network chosen in this study which has 

four layers of nodes: one input layer, one output layer 

and two hidden layers.  Each line connecting the nodes 

has a unique weight associated to it. The signals in the  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

                     

 

Figure 3: Architecture of the Neural Network 

 

feed forward neural network travel in one direction 

only, that is from input to output. The output of each 

node is determined from its inputs and the weights 

associated with the lines between its inputs and this 

node. This study develops two 4-layer feed-forward 

back propagation networks with an input layer of 

fourteen nodes, 10 nodes in the first hidden layer,10 

nodes in the second hidden layer, and one node in the 

output layer. Two networks are for two different outputs 

corresponding to the two dependent variables (TLOC 

and TC). 

The input node(s) are connected to every node of 

the hidden layer and are not directly connected to the 

output nodes. All the nodes of the hidden layer are 

connected to the output nodes. Thus, the network does 

not have any shortcut connection or any lateral 

connection. The transfer function used between all the 

layers is tansig. The number of epochs used was 1000 to 

achieve the training goal. The network training function 

used is trainrp, which updates weight and bias values 

according to the resilient back propagation algorithm. 

The model is trained on approximately two thirds of the 

input data set and the network is tested on the 

remaining one third of the data set. The advantage of 

neural networks is that they are self-adaptive techniques 

and do not require more understanding with the input 

data. The reason for using neural networks is that the 

relation between the output and input variables is not 

Metric  Min Max Mean Std.  

Deviation 

WMC 1 45 10.93 10.248 

NMO 0 2 0.44 0.839 

NOA 0 7 1.76 2.037 

NOM 1 28 7.28 6.965 

DIT 0 2 1.35 0.520 

NOC 0 2 0.06 0.302 

CBO 0 15 2.13 2.882 

RFC 1 62 11.69 11.472 

DAC 0 7 0.89 1.355 

TCC 0 1 0.41 0.428 

LCOM 0 310 13.06 48.530 

ICH 0 24 1.50 5.076 

MPC 0 113 7.20 17.178 

LOC 7 262 53.69 48.900 

TLOC 3 545 119.76 136.243 

TM 1 52 9.59 11.249 

TC 0 121 18.98 24.574 

 

Input 

neurons 

weights Hidden 

layer 

Hidden 

layer 

weights output 

neurons 
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linear and is very complex.  

 

3.3. Performance Evaluation 

The ―pmr‖ model development data set (roughly two-

thirds of the entire data set) was analyzed using the 

spearman’s correlation analyses and scatter plots, in 

order to identify influential variables with an aim to 

create a pragmatic model. The models were developed 

based on the results of this analysis under the least-

squares regression, the robust regression methods and 

the neural network. The models obtained using the 

development data set were then applied to the testing 

subset (remaining one third of data set) and were 

evaluated using the following error measures. 

1. The magnitude of relative error (MRE):  The 

magnitude of relative error (MRE) [7] is a normalized 

measure of the discrepancy between the actual data 

values (Dact) and the predicted values (Dpred): 

                                      ARE = |( Dact – Dpred)|     

 (1) 

                                      MRE =ARE/ Dact      (2) 

 

The mean MRE (MMRE): MMRE [7] is the mean value 

for this indicator over all the observations in the data set. 

A software practitioner considers a model to be accurate 

if the value of MMRE is low.  

The Pred(k) measures an indication of the overall fit for 

a set of data points, based on the MRE values for each 

data point: 

                                        Pred(k) = i/n       (3)  

 

Table 3: Regression performance for TLOC 

 

 

 

 

 

 

Table 4: Regression performance for TC 

 

 

 

Ta

ble 5: 

Neur

al 

Netw

ork 

Perfo

rman

ce for 

TLO

C 

 

 

 

 

 

 

 

 

 

 

 

Ta

ble 6: Neural Network Performance for TC 

 

 

 

 

 

Pmr 

TLO

C 

Robust Regression  Least Squares Regression 

All     Trainin

g 

Testin

g 

All 

 

Training Testin

g 

MM

RE 

2.2 

 

0.78 1.27 0.48 0.52 0.43 

Std 29.3 25.68 40.53 45.9 23.1 67.3 

Medi

an 27.5 28.16 27.08 

22.14 22.95 22.07 

Abs

mean 34.12 32.89 38.42 

36.81 27.15 56.9 

Asu

m 

1842.5 

 

5141 461 

 

1766.

86 

841.55 968.9 

Pred(

0.25) 0.33 0.48 0.33 

0.39 0.42 0.353 

Pred(

0.30) 0.41 0.5 0.42 

0.41 0.42 0.412 

Pmr 

TC 

Robust Regression  Least Squares Regression 

All 

     

Train 

ing 

Testing All 

 

Training Testing 

MMR

E 

0.89 1.44 1.79 1.16 1.15 1.16 

 

Std 15.5 8.06 29.17 18.9 8.2 28.82 

Medi

an 6.05 5.4 6.04 5.38 

5.03 

7.45 

Absm

ean 9.91 7.31 17.57 11.9 

7.85 

19.32 

Asu

m 

535.3 277.8

9 

210.8 

 

571.7 

 

243.3 328.43 

 

Pred(

0.25) 0.44 

0.37 

0.33 0.27 

0.29 0.24 

Pred(

0.30) 0.48 

0.45 

0.42 0.31 

0.32 0.29 

pmr 

TLOC 

Neural Model 

All     Training Testing 

MMRE 0.17 0.21 0.28 

Std 6.89 0.69 12.24 

Median 0.56 0.229 1.32 

Absmean 1.87 0.47 5.18 

Asum 100.8 17.94 82.87 

Pred(0.25) 0.72 0.79 0.56 

Pred(0.30) 0.76 0.79 0.69 

pmr 

TC 

Neural Model 

All     Training Testing 

MMRE 0.27 0.25 0.29 

Std 6.8 0.96 11.6 

Median 1.03 0.64 3.3 

Absmean 2.7 0.9 6.9 

Asum 144.9 34.06 110.86 

Pred(0.25) 0.69 0.66 0.63 

Pred(0.30) 0.69 0.68 0.69 
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In equation (2), k is the selected threshold value for 

MRE, i is the number of data points with MRE less than 

or equal to k, and n is the total number of data points. In 

this study Pred(0.25) and Pred(0.30) are used to compare 

the prediction performance of the models. Pred(0.25) 

measures the percentage of the estimates with an MRE 

of 25% or less, and Pred(0.3) measures the percentage of 

the estimates with an MRE of 30% or less. We also use 

the sum of AREs (Asum), the mean of AREs (Absmean), 

the median of AREs(Median) and the standard deviation 

of AREs (Std) to see the distribution of AREs. The Asum 

measures the ARE over the data set, the Median 

measures the central tendency of the distribution of 

ARE, the Std measures the dispersion of the distribution 

of ARE and the Absmean measures the mean of the 

AREs. These measures are used to measure the 

prediction performance of the models.     

 

4 EMPIRICAL RESULTS 
In this section, we analyze the results of the ANN 

models using the ―pmr‖ data set. We have used 

MATLAB to build the back propagation trained feed-

forward ANN model. To assess the benefits of using 

ANN, we compare the prediction performances of the 

ANN models with those of the MLR models. In this 

study, we use the backward selection procedure to build 

the MLR prediction models. The software used is SPSS 

16.0. The entry criterion used in the backward selection 

is the p-value of the F statistic being smaller than or 

equal to 0.05 and the eliminating criterion used is the p-

value of the F statistic being larger than or equal to 0.10. 

The software STATA is used to build the robust 

regression models. 

 
 4.1.Regression results 

Tables 3 and 4 show the values of the performance 

measures achieved by both the regression models for the 

pmr dataset for both the dependent variables (TLOC, TC).  

The performance measures are calculated for all the data, 

the training data and the testing data. The results presented 

in the Tables 3 and 4 illustrate that the models built under 

the least-squares regression are better than the ones built 

with the robust regression. 

Table 3 shows that the Robust regression model for 

TLOC has achieved the MMRE values of 2.2, 0.78 and 1.27, 

the pred(0.25) values of 0.33, 0.48 and 0.33 for all data, 

training data and testing data. Table 3 shows that the Least 

squares regression model for TLOC has achieved the 

MMRE values of 0.48, 0.52 and 0.43, the pred(0.25) value of 

0.39, 0.42 and 0.353 for all data, training data and testing 

data. The values of MMRE are lower for the least squares 

regression as compared to the robust regression 

model.Table 4 shows that the Robust regression model for 

TC has achieved the MMRE values of 0.89, 1.44 and 1.79, 

the pred(0.25) value of 0.44, 0.37 and 0.33 for all data, 

training data and testing data. Table 4 shows that the Least 

squares regression model for TC has achieved the MMRE 

values of 1.16, 1.15 and 1.16, the pred(0.25) values of 0.27, 

0.29 and 0.24 for all data, training data and testing data. The 

values of MMRE are lower for the least squares regression 

as compared to the robust regression model. 

From the above discussion we conclude that out of the 

two regression models, least-squares regression model is 

better than the robust regression model as it has the lower 

value of MMRE for both the dependent variables.  

 
4.2. The Neural Network Predictions 

The two neural network models were developed for two 

different dependent variables (TLOC and TC) using the 

following steps: 

1. The ―pmr‖ data set was divided into the training and 

validation sets (roughly two-third and one-third 

respectively). The same division of data set is used for 

training and validation as those used in case of the 

regression models. 

2. A number of networks were created with different 

network architectures and training parameters. 

3. The training data set was used to train the networks, 

until the error is minimum. 

4. The best network, in terms of having the lowest error, 

was used to make predictions for the testing data. 

5. Different error measures are calculated on the 

network’s performance. 

The values in Tables 5 and 6 show that the neural 

network models for TLOC and TC perform significantly 

better than the corresponding regression models in 

Tables 3 and 4. Table 5 shows that the MMRE values for 

TLOC are 0.17, 0.21 and 0.28 for the neural network 

model, for all data, training data and testing data, 

respectively. Whereas the corresponding values for least 

squares regression are 0.48, 0.52, and 0.43 and for robust 

regression method are 2.2, 0.78, and 1.27. By predicting 

both the dependent variables the testing effort is 
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measured which in turn provides an insight into the 

testability.       

The results show that the models constructed using 

the neural network method are feasible and adaptable to 

object oriented systems in order to predict the software 

testability. However, many more studies are needed in 

order to provide generalized conclusions. 

 

5 CONCLUSIONS AND FUTURE WORK 
This study has compared the results of the prediction of 

the software testability using the ANN method with the 

results of the models predicted using the two types of 

regression methods (the least squares regression method 

and the robust regression method). The independent 

varaibles used in this work are the object oriented design 

metrics and the dependent varaibles are the test metrics 

of the object oriented software at the class level. These 

test metrics provide the testing effort for a class which in 

turn provides an assessment of the class testability. In 

order to compare and analyse the performance of the 

ANN method and the regression methods, we have used 

an open source software called ―pmr‖. The values of 

MMRE in ANN model were small as compared to the 

MMRE values in regression models for both the 

dependent variables (TLOC and TC). Hence, the results 

show that the performance of the ANN method is higher 

than that of the regression method. Thus, ANN method 

may be used in predicting the software testability of 

object oriented systems.  

However, there are a few limitations of this 

study. First, although the size of data set used was quite 

significant, further empirical studies with different 

systems of different sizes and different platforms are 

needed to strengthen the results of this study. Second, 

the software testability is based upon a number of 

aspects like the requirements, the process, and the 

design attributes etc. In this study, only design attributes 

have been used for predicting the testability. Third, this 

study should be extended to a number of other design 

level metrics which are based on other object oriented 

features like: polymorphism, exception handling etc.  
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APPENDIX 

Size metrics 
 
In this section four size metrics are discussed. These metrics 
measure the size of the system in terms of lines of code, 
attributes and methods included in the class. As these 
metrics capture the complexity of the class hence they can 
give an insight into the testability of the class. 
 
Lines of code per class (LOC) 
It counts the total number of lines of code (non-blank and 
non-comment lines) in the class.  
Number of Attributes per Class (NOA) 
It counts the total number of attributes defined in a class.  
Number of Methods per Class (NOM) 
It counts number of methods defined in a class.  
Weighted Methods per Class (WMC) 
The WMC is the count of the sum of the McCabe’s 
Cyclomatic Complexity for all the methods in the class. If 
method complexity is one for all the methods, then WMC = 
n, the number of methods in the class.  
 
Cohesion Metrics 
 
Cohesion measures the degree to which the elements of a 
module are functionally related. A strongly cohesive 
module does little or no interaction with other modules and 
implements the functionality which is related to only one 
feature of the software. This study considers following 
three cohesion metrics. 
 
Lack of Cohesion in Methods (LCOM) 
Lack of Cohesion (LCOM) measures the cohesiveness of the 
class. It is defined as below: 
Let M be the set of methods and A be the set of attributes 
defined in the class. Ma is the number of methods that 
access a. Mean be the mean of Ma over A.Then,  
LCOM = (Mean -|M|)/(1 - |M|) 
Information flow based Cohesion (ICH) 
ICH for a class is defined as the number of invocations of 
other methods of the same class,    weighted by the number 
of parameters of the invoked method. 
Tight Class Cohesion (TCC) 
The measure TCC is defined as the percentage of pairs of 
public methods of the class with common attribute usage.  
 
Coupling metrics 
Coupling relations increase complexity and reduce 
encapsulation. 
 
Coupling Between Objects (CBO) 
CBO for a class is the count of the number of other classes 
to which it is coupled. Two classes are coupled when 
methods declared in one class use methods or instance 
variables defined by the other class.  
 

Data Abstraction Coupling (DAC) 
Data Abstraction is a technique of creating new data types 
suited for an application to be programmed. Data 
Abstraction Coupling (DAC) is defined as the number of 
ADTs defined in a class.  
Message passing Coupling (MPC) 
Message Passing Coupling (MPC) is defined as the 
―number of send statements defined in a class‖. So if two 
different methods in class C access the same method in 
class D, then MPC = 2.  
Response for a Class (RFC) 
The response for a class (RFC) is defined as the set of 
methods that can be executed in response to a message 
received by an object of that class.  
 
Inheritance Metrics 
This section discusses two different inheritance metrics, 
which are considered for this study. 
 
Depth of Inheritance Tree (DIT) 
The depth of a class within the inheritance hierarchy is the 
maximum number of steps from the class node to the root 
of the tree and is measured by the number of ancestor 
classes.  
Number of Children (NOC) 
The NOC is the number of immediate children of a class in 
the class hierarchy.  
 
Polymorphism Metrics 
Polymorphism is the characteristic of object oriented 
software through which the implementation of a given 
operation depends on the object that contains the operation. 
 
Number of Methods Overridden by a subclass (NMO) 
When a method in a child class has the same name and 
signature as in its parent class, then the method in the 
parent class is said to be overridden by the method in the 
child class. 


